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• Lecture aims:

• Be familiar with the PID controller as a key element of  many feedback systems.

• Be capable of  designing a controller to meet desired specifications using frequency

response methods.



• A 2nd Order SISO System with Input to Control Shaft Position:

PID Control



PID Block Diagram:
PID Control



PID Mathematically:
• Consider the input error variable, e(t):

• Let p(t) = Kp*e(t)   {p proportional to e (mag)}

• Let i(t) = Ki*∫e(t)dt {i integral of  e (area)}

• Let d(t) = Kd* de(t)/dt {d derivative of  e (slope)}

AND let Vdc(t) = p(t) + i(t) + d(t)

Then in Laplace Domain:

Vdc(s) = [Kp + 1/s Ki + s Kd] E(s)

PID Control
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Next we consider the three basic control modes starting with the simplest mode, proportional control.

Proportional Control

In feedback control, the objective is to reduce the error signal to zero where

      (8-1)sp me t y t y t 
and

 

 

 

error signal

set point

measured value of the controlled variable

(or equivalent signal from the sensor/transmitter)
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e t
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Although Eq. 8-1 indicates that the set point can be time-varying, in many process control 

problems it is kept constant for long periods of time.

For proportional control, the controller output is proportional to the error signal,

    (8-2)cp t p K e t 

where:

  controller output

bias (steady-state) value

controller gain (usually dimensionless)c

p t

p

K







Basic Control Modes

Proportional Control



• Increasing gain approaches setpoint faster

• Can leads to overshoot, and even 
instability

• Steady-state offset

Basic Control Modes

Proportional Control

An inherent disadvantage of proportional-only 

control is that a steady-state error occurs after 

a set-point change or a sustained disturbance.
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For integral control action, the controller output depends on the integral of the error signal over time,

   
0

1
* * (8-7)

τ

t

I

p t p e t dt  

where     , an adjustable parameter referred to as the integral time or reset time, has units 

of time.

τI

Integral control action is widely used because it provides an important practical advantage, the 

elimination of offset. Consequently, integral control action is normally used in conjunction with 

proportional control as the proportional-integral (PI) controller:

     
0

1
* * (8-8)

τ

t

c
I

p t p K e t e t dt
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0

1
* * (8-7)

τ

t

I

p t p e t dt  
     

0

1
* * (8-8)

τ

t

c
I

p t p K e t e t dt
 

   
 



Basic Control Modes
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• An inherent disadvantage of integral control action is a phenomenon known as 

reset windup or integral windup.

• Recall that the integral mode causes the controller output to change as long as e(t*) 

≠ 0 in Eq. 8-8.

• When a sustained error occurs, the integral term becomes quite large and the 

controller output eventually saturates.

• Further buildup of the integral term while the controller is saturated is referred to as 

reset windup or integral windup.

Basic Control Modes

Integral Control
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Derivative Control

The function of derivative control action is to anticipate the future behavior of the error signal 

by considering its rate of change.

• The anticipatory strategy used by the experienced operator can be incorporated 

in automatic controllers by making the controller output proportional to the 

rate of change of the error signal or the controlled variable.

Basic Control Modes

• Thus, for ideal derivative action,

 
 

τ (8-10)D

de t
p t p

dt
 



• Damping fights oscillation and overshoot

• But it’s vulnerable to noise

Basic Control Modes

Derivative Control

• Unfortunately, the ideal proportional-

derivative control algorithm is physically 
unrealizable because it cannot be 

implemented exactly.



num=1; 

den=[1 10 20]; 

step(num,den)

Open-Loop Control - Example

G s( )
1

s
2

10s 20

Basic Control Modes

http://www.engin.umich.edu/group/ctm/extras/step.html


Proportional Control - Example

The proportional controller (Kp) reduces the rise time, increases 

the overshoot, and reduces the steady-state error.  

MATLAB Example

Kp=300;

num=[Kp];

den=[1 10 20+Kp];

t=0:0.01:2;

step(num,den,t)
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Basic Control Modes
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Kp=300;

Kd=10;

num=[Kd Kp];

den=[1 10+Kd 20+Kp];

t=0:0.01:2;

step(num,den,t)

Proportional - Derivative - Example

The derivative controller (Kd) reduces both the overshoot and the 

settling time.

MATLAB Example

T s( )
Kd s Kp

s
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10 Kd( ) s 20 Kp( )
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Proportional - Integral - Example

The integral controller (Ki) decreases the rise time, increases both the 

overshoot and the settling time, and eliminates the steady-state error

MATLAB Example
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Kp=30;

Ki=70;

num=[Kp Ki];

den=[1 10 20+Kp Ki];

t=0:0.01:2;

step(num,den,t)
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CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

The Characteristics of  P, I, and D controllers

Proportional-Integral-Derivative (PID) 
Control



Tips for Designing a PID Controller

1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.  

Proportional-Integral-Derivative (PID) 
Control



PID Controllers

Tuning 

- More than half of the industrial controllers in use today utilize  PID or modified 

PID control schemes.

- Many different types of tuning :

Manual tuning on-site

On-line automatic tuning

Gain scheduling

- When the mathematical model of the plant is not known and therefore analytical 

design methods cannot be used, PID controls prove to be most useful.



Design PID control

- Know mathematical model  various design techniques

- Plant is complicated, can’t obtain mathematical model 

experimental approaches to the tuning of PID controllers

PID control of a plant.

PID Controllers



Tuning of  PID Controllers

Because of  their widespread use in practice, we present below several methods 

for tuning PID controllers.  Actually these methods are quite old and date back 

to the 1950’s.  Nonetheless, they remain in widespread use today.

In particular, we will study.

• Ziegler-Nichols Reaction Curve Method

• Ziegler-Nichols Oscillation Method



Ziegler-Nichols 1st Method of Tuning Rule

- We obtain experimentally the response of the plant to a unit-step input, as shown 

in Figure.

- The plant involves neither integrator(s) nor dominant complex-conjugate poles.

- This method applies if the response to a step input exhibits an S-shaped curve.

- Such step-response curves may be generated experimentally or from a dynamic 

simulation of the plant.

Unit-step response of a plant.

PID Controllers



S-shaped response curve.

L = delay time

T = time constant

PID Controllers



Transfer function:

Table 1 Ziegler–Nichols Tuning Rule Based on Step Response of Plant (First 

Method)

PID Controllers
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(2)Ziegler-Nichols (Z-N) Oscillation Method

This procedure is only valid for open loop stable plants and it is carried out 

through the following steps

• Set the true plant under proportional control, with a very small gain.

• Increase the gain until the loop starts oscillating.  Note that linear 

oscillation is required and that it should be detected at the controller 

output.

PID Controllers



Ziegler-Nichols 2nd Method of Tuning Rule

1. We first set Ti =  and Td = 0. Using the proportional control 

action only (see Figure).

Closed-loop system with a proportional controller.

PID Controllers



2. Increase Kp from 0 to a 

critical value Kcr at which 

the output first exhibits 

sustained oscillations.

Sustained oscillation with period Pcr. (Pcr is measured in sec.)

PID Controllers



 Ziegler and Nichols suggested that we set the values of the 

parameters K,, T,, and Td according to the formula shown in Table 2.

Table 2 Ziegler–Nichols Tuning Rule Based on Critical Gain Kcr and 

Critical Period Pcr (Second Method)

PID Controllers
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PID-controlled system.

PID Controllers



PID Controllers
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Block diagram of the system with PID controller designed by use of the Ziegler–

Nichols tuning rule (second method).

PID Controllers



PID Controllers



Figure 10-8 Unit-step response curve of PID-controlled system designed by use of 

the Ziegler–Nichols tuning rule (second method).

PID Controllers





When PID Control is Used

• PID control works well on SISO systems of  2nd Order, where a desired Set 
Point can be supplied to the system control input

• PID control handles step changes to the Set Point especially well:

• Fast Rise Times

• Little or No Overshoot

• Fast settling Times

• Zero Steady State Error

• PID controllers are often fine tuned on-site, using established guidelines



PID Control

• A closed loop (feedback) control system, generally with Single Input-Single 

Output (SISO)

• A portion of  the signal being fed back is:

• Proportional to the signal  (P)

• Proportional to integral of  the signal (I)

• Proportional to the derivative of  the signal (D)
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The key concepts behind proportional control are the following:

1. The controller gain can be adjusted to make the controller output changes as 

sensitive as desired to deviations between set point and controlled variable;

2. the sign of Kc can be chose to make the controller output increase (or 

decrease) as the error signal increases.
For proportional controllers, bias      can be adjusted, a procedure referred to as manual reset.

Some controllers have a proportional band setting instead of a controller gain. The proportional 

band PB (in %) is defined as

p

100%
(8-3)

c

PB
K

Basic Control Modes

Proportional Control
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In order to derive the transfer function for an ideal proportional controller (without 

saturation limits), define a deviation variable    as p t     (8-4)p t p t p 

Then Eq. 8-2 can be written as     (8-5)cp t K e t 

The transfer function for proportional-only control: 
 

 
(8-6)c

P s
K

E s




An inherent disadvantage of proportional-only control is that a steady-state error occurs 

after a set-point change or a sustained disturbance.

Basic Control Modes

Proportional Control
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The corresponding transfer function for the PI controller in Eq. 8-8 is given by

 

 

τ 11
1 (8-9)

τ τ

I
c c

I I

P s s
K K

E s s s

    
     

   

Some commercial controllers are calibrated in terms of        (repeats per minute) rather than      

(minutes, or minutes per repeat).

1/ τI τI

Basic Control Modes

Integral Control
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where      , the derivative time, has units of time.

For example, an ideal PD controller has the 

transfer function:

τD

 

 
 1 τ (8-11)c D

P s
K s

E s


 

• By providing anticipatory control action, the derivative mode tends to stabilize 

the controlled process.

• Unfortunately, the ideal proportional-derivative control algorithm in Eq. 8-10 is 

physically unrealizable because it cannot be implemented exactly.

Basic Control Modes

Derivative Control
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• For analog controllers, the transfer function in (8-11) can be approximated 

by  

 

τ
1 (8-12)

ατ 1

D
c

D

P s s
K

E s s

  
  

 

where the constant α typically has a value between 0.05 and 0.2, with 0.1 

being a common choice.

• In Eq. 8-12 the derivative term includes a derivative mode filter (also called 

a derivative filter) that reduces the sensitivity of the control calculations to 

high-frequency noise in the measurement.

Basic Control Modes

Derivative Control



Ziegler-Nichols Rules for Tuning PID Controllers

-Ziegler and Nichols proposed rules for determining values of the proportional gain 

Kp, integral time Ti, and derivative time Td based on the transient response 

characteristics of a given plant.

-Such determination of the parameters of PID controllers or tuning of PID controllers 

can be made by engineers on-site by experiments on the plant.

-Such rules suggest a set of values of Kp, Ti, and Td that will give a stable operation of 

the system. However, the resulting system may exhibit a large maximum overshoot in 

the step response, which is unacceptable.

- We need series of fine tunings until an acceptable result is obtained.

PID Controllers



(1)  Reaction Curve Based Methods

A linearized quantitative version of  a simple plant can be obtained with an open 

loop experiment, using the following procedure:

1. With the plant in open loop, take the plant manually to a normal operating 

point.  Say that the plant output settles at  y(t) = y0 for a constant plant 

input  u(t) = u0.

2. At an initial time,  t0, apply a step change to the plant input, from u0 to u
(this should be in the range of 10 to 20% of full scale).

PID Controllers


